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Preface 

The purpose of this research was to improve a goal programming technique that was 

developed to solve nonlinear boundary value problems. The goal programming method 

of solving such problems was developed by Kevin Ng of the Canadian Department of 

Defense. While Ng developed a very simple and novel approach to such problems that 

produced excellent results, it seemed that he left room for others to improve on his work. 

My interest in genetic algorithms is what prompted to me to adopt the modification 

described in this document. While my initial intention was only to improve on the 

optimizing engine of Ng's basic model, as I learned more about genetic algorithms it 

became apparent that I could further simplify his technique. Hence, I arrived at what I 

have termed "modified" compromise programming. 

This research would not have been possible without the help of others. I owe a great 

deal of gratitude to my research advisor, Captain Mike Stoecker. Not only did he keep 

me going in the right direction throughout, but his ability to see through complex 

problems led directly to the modification which I adopted ("but the book says to set it up 

this way!"). Additionally, Dr. Yupo Chan provided much insight into the field of 

compromise programming. I would also like to thank Dr. Gary Lamont for lending his 

expertise in the area of genetic algorithms. Lastly, I would like to thank someone who 

knows nothing about compromise programming, genetic algorithms, or boundary value 

problems for that matter — my wife Pam. But she does know all about "supporting the 

mission" and that is what she did throughout my quest. If only I possessed her superb 

organizational abilities. 
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Abstract 

This study is an extension of Ng's previous work in which goal programming was used 

to determine an approximate solution to a boundary value problem. This approach 

follows the same basic approach developed by Ng in which the method of collocation 

was recast as a compromise programming model. Hence, instead of solving a system of 

simultaneous nonlinear equations, one seeks a compromise solution which minimizes (in 

a weighted residual sense) a vector norm of the differential equation residuals. A 

difference in this approach is that it makes use of a genetic algorithm as the optimizing 

engine as opposed to the pattern search used by Ng. The model developed in this 

approach also consists of a modification to the generalized compromise programming 

model by eliminating the need for deviation variables. As a result, this model is a 

simplification in that the number of decision variables is completely independent of the 

number of collocation points. This technique is very robust in that it has been shown to 

produce good results on a variety of problems. The results of four example problems 

compare favorably with those of Ng and other solution techniques. 
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A ROBUST METHOD OF SOLVING NONLINEAR BOUNDARY 
VALUE PROBLEMS VIA MODIFIED COMPROMISE 

PROGRAMMING 

I. Introduction 

Background 

Projection methods encompass a whole class of techniques to approximate the 

solution of boundary value problems. A particular projection method that is widely used 

is the method of collocation. In this method, the solution is approximated by a test 

function which is a finite sum of terms which are referred to as trial functions. This test 

function is generally constructed to be linear with respect to its unknown coefficients or 

parameters and is usually of the form 

N 

1=1 

where {c;} is the set of unknown parameters and {(j);} is the chosen set of trial functions. 

The test function v is considered a solution of the boundary value problem of the 

form 

*■(*.«,&.-.#)   -   o (I'D 

Bu   —   0       on boundary, (1-2) 
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where F is a function of its arguments and B is a boundary operator, provided u 

satisfies Equations 1-1 and 1-2 for some choice of {c,}. Substituting the test function 

into Equation 1-1 yields the following set of residual equations. 

R(c,x) = F{x,Jlcrtl£cr%,...,%cr*2h)    =   0 (1-3) 

Choosing N distinct collocation points, {x;}, and requiring that the residual equation be 

exactly satisfied at each collocation point yields a system of equations (one equation for 

each collocation point). An important aspect of this technique is that once the collocation 

points, {x;}, are chosen, they are no longer variables with respect to the system of 

equations to be solved. Instead, the coefficients, {c;}, are the only unknowns in the 

system. Solving the equations for these unknown coefficients and substituting those 

values into the original trial function will yield an approximation of the solution to the 

differential equation. This technique yields a solution that interpolates the differential 

equation at the collocations points only. In general, this approximation will not 

interpolate the differential equation at other points in the domain nor will it satisfy the 

boundary conditions. To ensure the boundary conditions are satisfied, residuals similar to 

Equation 1-3 must be formed. To prevent the system of equations from being over 

specified, either the number of collocation points or the number of trial functions must be 

adjusted accordingly.   The point here is that in standard collocation methods the number 

of equations should equal the number of unknown coefficients {C;}. 

For linear differential equations, the set of residual equations reduces to a system of 

linear equations which must be solved. Consequently, the method is very simple to use 

and requires relatively minimal computing resources. However, in the case of a nonlinear 

differential equation, a drawback to the method is the requirement to solve a system of 
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nonlinear equations. Normal procedures might use Newton's method or another similar 

technique to solve for the {Cj}. For relatively small systems of equations (i.e., only a few 

collocation points) this may be a relatively easy problem to solve. However, if a more 

accurate solution is desired more collocation points must be used thereby increasing the 

dimension of the system. While large systems of linear equations can be relatively easy 

to solve, the same cannot be said of nonlinear equations. Hence, a technique which 

simplifies the solution process for the system of equations would be desirable. 

Kevin Ng proposed a modification to the collocation technique by utilizing a multi- 

criteria decision making approach to solve for the unknown coefficients (17:103). Rather 

than solve for the coefficients by requiring the residuals equal zero at the N collocation 

points, Ng developed a goal programming model where the objective was to minimize 

the sum of the absolute value of the residuals, I R(c;, Xj) I, over M collocation points. 

This approach allows one to choose M much greater than N without having to add more 

trial functions (and thus more c; 's) to the test function. Thus we may end up with a more 

"compact" approximation of the unknown function. 

The general form of his model is as follows: 

M 

C:,I=1,2,...JV •*"""   ' 

subject to 

R(cl,xl) + ni-p1    =   0, (1-5) 

R(ct,x2) + n2-p2    =   0, 

R(ci,xM) + nM - pM     =     0, 
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where {rij} is the set of deviational variables introduced to represent negative deviations 

from goal level j and {pj} is the set of deviational variables representing positive 

deviations from goal level j. It follows that each of these deviational variables must be 

non-negative.   In the goal programming construct of the model the objective function 

will actually take on the form: 

M 

min 2 (nj + Pj) 
.7=1 

Upon solving this optimization problem, Ng determined the root mean square of the 

deviations over selected points in the domain. If that value is greater than a specified 

tolerance level, an additional trial function is added to the test function and the model is 

run again. The use of the root mean square is based on Ng's observation that in the 

absence of rigorous error bounds on the approximate solution, users of collocation 

methods assume that a small root mean square is an indication of a good solution 

(17:106).   This process continues until the root mean square is within tolerance. 

Typically, Ng used a tolerance value of 0.1 for the root mean square as his standard. 

To handle the nonlinearity of the constraints in the above model, Ng used a modified 

pattern search algorithm based on the method developed by Hooke and Jeeves (17:106). 

This algorithm produced results on several test problems that were very good compared 

to solutions achieved by more classical solution procedures. 

Problem 

While Ng developed a useful new approach to solve boundary value problems, there is 

room to improve on his technique. As shall be seen, his method can be improved in two 

ways. First, some improvement can be made in reducing the problem size. By this I am 

referring to the dimensionality and, hence, the number of variables utilized to generate a 
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solution. The nature of his goal programming formulation calls for adding two 

deviational variables for each collocation point over which he minimized. A method 

which introduces no new variables would be a clear improvement over his technique. A 

second improvement can be made in the robustness of his approach. Here, I am referring 

to the optimization algorithm used to find the optimal solution. While the Hooke and 

Jeeves pattern search has been shown to be useful in many nonlinear programming 

applications, it has some of the same limitations as other optimizing algorithms. The 

primary limitation of the algorithm is the uncertainty involved in making the proper 

selection of a starting point. This matter will be discussed in more detail in Chapter 2. 

I will present a simpler yet more robust method of approximating the solution of a 

steady partial differential equation via collocation and modified compromise 

programming. Here I have used the more general framework of compromise 

programming (which is an extension of goal programming) as it will be a more 

appropriate label for the model. 

Scope 

While the possibilities of implementing the solution technique are many, this research 

is limited to the treatment of scalar partial differential equations. Within this class of 

problems I shall demonstrate the applicability of the procedure to linear and nonlinear 

problems. 

This thesis presents a graduated approach to the solution of four different boundary 

value problems. First, I shall demonstrate the technique on the Navier-Stokes equation 

which was also solved by Ng. This problem will allow for a direct comparison of the two 

techniques. Next, I will solve a simple linear ordinary differential equation. This 

equation will be solved to demonstrate the applicability of the technique to other classes 

of problems and is not a problem of any physical significance. I will then present the 
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solutions to two classic nonlinear problems: the steady Burgers equation and the steady 

Fisher equation.   In each problem I will compare my results with analytic solutions 

(when available) and other approximating solutions via various other techniques in the 

field. 

General Approach 

As previously stated, the goal of this research was to work with Ng's basic problem 

formulation and modify it in order to simplify the model while incorporating a more 

sophisticated optimization algorithm. I have been able accomplish both of these 

objectives by relying on a genetic algorithm as the optimizing engine. As it turns out, the 

choice of a genetic algorithm almost necessitates the simpler model construct. Because 

genetic algorithms cannot handle explicit constraints, Ng's constrained model had to be 

formulated into a model with no constraints. While such techniques as the introduction of 

penalty functions or barrier functions transform a constrained problem into an 

unconstrained one, I found that this was not necessary. A simpler transformation can be 

performed that provides the same effect without undue complication of the model. 

Further, this transformation eliminates the need for the deviational variables that were 

introduced into the goal programming model. As a result, the model is of a more 

compact and intuitive form. For example, Ng's approach with a four term test function 

and one hundred collocation points would require a model with over two hundred 

variables and at least one hundred constraints. My formulation of the same problem has 

only a single objective function of four variables and no constraints. The advantage here 

is obvious as long this model produces results that are at least as good as Ng's. 

1-6 



Presentation 

This report is organized as follows. Up to this point, the background for the problem 

has been laid as well as the general direction for the solution. Chapter Two is devoted to 

presenting preliminary information that will serve to justify the need for the research as 

well as validate my approach. It will also serve as a point of departure from current 

knowledge in the field to my research. Chapter Three will present the methodology of my 

research. This chapter will include a detailed description of compromise programming 

and will serve to explain the difference between generalized and modified compromise 

programming. Chapter Four will consist of worked examples and analysis of the 

technique to include a detailed description of each problem solved as well as any known 

solutions to the problems. Chapter Five will conclude with general findings and 

recommendations for further study. 
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II. Preliminaries 

Introduction 

The purpose of this chapter is two-fold. First, it will present various approaches to 

solving boundary value problems (including the method developed by Ng) all of which 

have some limitations. Second, further review of literature in the field will demonstrate 

where my approach may be able to overcome some of those shortcomings. As a result, 

my technique will be presented as an alternative method to be utilized if the limitations of 

the other techniques prove to be an obstacle for a particular problem or set of problems. 

Limitations of Current Techniques 

Classical Approximation Techniques. In general, when analytical 

approaches to solving differential equations are inadequate, some sort of approximation 

technique is utilized. Significant texts by Prenter (20); Villadsen and Michelsen (29); 

Ascher and Russell (1); Powell (20); and numerous others are devoted exclusively to 

approximation theory and applications. The method of weighted residuals (MWR) is one 

such approximation technique that stands at the forefront (17:103).     This technique may 

use any one of a number of means to "explain" the inherent error in the approximation 

process. Collocation, orthogonal collocation, least squares, the abdomain method, and the 

Galerkin method are some of the primary means of establishing the error criteria 

(17:103).   Although these techniques are often useful, they also have drawbacks that may 

leave the engineer in want of another approach. 

All but the collocation methods share the common need to evaluate integrals of the 

chosen trial functions (17:103).    The need to evaluate these integrals is the main 
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drawback of such techniques. If the trial function utilized is not easily integrable, the 

solution process is hindered. While there are numerical techniques available to 

approximate the integration process, automation of such techniques adds an additional 

burden on the solver. In addition, using approximation techniques within other 

approximation techniques may hamper the goal of meeting specified error criteria. 

Although the collocation technique avoids the problems involved in integrating the 

trial functions, it has another problem when being utilized to solve a nonlinear differential 

equation ~ the problem of solving systems of nonlinear algebraic equations. While 

techniques abound in solving nonlinear problems such as Newton's method, the 

bisection method, the steepest ascent method, etc., each has its own limitations. Often the 

use of these methods is exhausting in terms of resources spent. One reason for this 

shortcoming is that the success or failure of the technique is often predicated on the 

choice of the starting point for the search. This choice is not a trivial matter and may 

ultimately determine the success or failure of the search. In addition, such search 

techniques may be limited by restrictive assumptions concerning the problem domain and 

nature of the underlying function. When assumptions pertaining to continuity, existence 

of derivatives, and unimodality of the functions cannot be reasonably applied, some of 

these techniques can no longer be utilized. Lastly, since these methods may involve the 

inversion of large matrices other problems may arise. Such things as the ill-conditioning 

of the matrix, definiteness, and singularity all can cause problems that would require 

special attention (15:161-5). In addition, the computing and storage requirements for 

such operations can impose a burden on the hardware utilized. Thus, no single method 

may be completely applicable to every class of problem. 

Collocation via Goal Programming. In his first paper on the subject, Ng 

applied a technique common to the operations research community to address some of 
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these shortcomings (17). While relying on the basic collocation method as the approach 

to approximating the solution to the differential equation, he utilizes goal programming as 

the means to determine the unknown coefficients of the trial functions. In doing so, he 

formulates a mathematical model that minimizes (in a weighted residual sense) the sum 

of the absolute value deviations of the differential equation residual (17:104).   Thus he 

has taken the general procedure of searching for roots of simultaneous nonlinear 

equations and transformed it into a procedure of optimizing a nonlinear objective function 

with associated constraints in the form of goals. The overall objective then is to 

minimize the sum of absolute value deviations over the chosen collocation points. 

Ng's novel approach has several advantages. First, his technique is very general in 

that it allows him to choose more collocation points than he has terms in his set of trial 

functions. The advantage here is that he can approximate the differential equation across 

a larger subset of the domain without having to concomitantly add a like number of terms 

to his approximating function (17:104). Another advantage is that his technique does not 

require integration. Lastly, by utilizing a directed pattern search algorithm in his goal 

programming model, he avoids the programming effort and other pitfalls inherent in 

using a Newton search or other like methods (17:104). 

While Ng's use of a pattern search as the optimizing vehicle for the model does avoid 

certain problems, it does have limitations. He used an approach developed by Hooke and 

Jeeves in 1960 (10) with slight modifications implemented by Ignizio (12). The nature of 

this algorithm is to explore trial solutions in specified step sizes from an initial base point 

and sequentially seek "better" solutions in incremental step sizes. These step sizes can be 

increased or decreased based on the criteria established by the programmer. The search is 

halted when a given number of steps does not yield marked improvement as defined by 

the programmer. While this algorithm adequately handles the nonlinear properties of 

Ng's example problems, certain aspects of its methodology may limit its usefulness in 
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other applications. For example, since the pattern search (like other methods previously 

mentioned) begins its search from a single base point (10:215), it suffers the same 

drawbacks as those other techniques when the starting point is not suitably chosen. 

Convergence to an optimum cannot be guaranteed and, when achieved, there is no 

guarantee of global optimality. Ng handles this problem by sequentially adding more 

terms to his approximating function when the solution obtained by the pattern search is 

not within a specified tolerance. One could reasonably expect that this method might 

generate an unnecessarily large number of terms in the approximating function if the 

pattern search never converges to a point near the global optimum. Thus, while Ng's 

approach has shown success there may be occasions when a more robust approach is 

desired. 

At this point one might justifiably ask: Is there one best algorithm to use for nonlinear 

programming problems? Obviously, this is a loaded question and the answer depends not 

only on what one means by "best" (i.e., rate of convergence, computational complexity, 

etc.) but also on the nature or structure of the problem. I have chosen not to make an 

issue of such things as rate of convergence or computational complexity for a few 

reasons. First, often the differences among the different techniques is minimal and given 

the power of modern computing resources a "slow" algorithm is not necessarily a bad 

algorithm as long as convergence is achieved in a reasonable amount of time. Also, with 

the advent of viable non-deterministic algorithms (such as genetic algorithms, simulated 

annealing, and other evolutionary based techniques), making such comparisons is 

difficult if not impossible. Thus, it seems reasonable to concentrate on a solution 

technique that is not severely limited by the particular structure type. 

There exists a great amount of literature on various methods of nonlinear 

programming. Since most of the methods are covered in standard text books (which also 

happen to give the best surveys of the subject), I have focused my research as such. 
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Perhaps Ignizio provides the best summary of nonlinear programming techniques. He 

reported the following well established observations: 

1. A particular method may perform well on one problem but poorly on a slight 
modification to that problem. 

2. The results obtained by any method are highly dependent on the starting point 
or points used to initiate the search. 

3. One can only hope to obtain a local optimal unless the problem is of very 
special form 

4. The vast majority of the rather small amount of computational experience 
available has been addressed toward problems of a very small, if not trivial, 
size. 

One should not naively accept the conclusions, as drawn by some investigators, with 

regards to their choice of algorithms as based on such minimal experience as cited above 

(12:155). It should be noted that his observations are somewhat dated (1976) and, hence, 

do not take into account newer algorithms. It shall be seen that the use of a genetic 

algorithm may avoid some of the problems mentioned above. 

The Genetic Algorithm 

Now we turn our attention to the use of a genetic algorithm to build on the goal 

programming foundation laid by Ng. Since Ng has already established the success of a 

pattern search algorithm in the model, it is important to show how a genetic algorithm can 

improve the solution process by overcoming some of the shortcomings cited by Ignizio. 

The explanation of how genetic algorithms work is better left to an appendix and will be 

treated as such (see Appendix A). For now it should suffice to explain the applicability 

of the genetic algorithm to the problem at hand. 

The genetic algorithm (GA) is a fairly recent development that has drawn increasing 

interest over the past few years (27:17).   First introduced by John Holland in 1975 (11), 
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GAs are now widely recognized as very robust mechanisms in optimization applications 

(7:10). These algorithms, which owe their name to the analogous study of evolution, 

have been very useful in such areas a biological modeling (5:872), least squares curve 

fitting (14:8), gas pipeline control systems (7:125), and spin glass models (28:549), to 

name but a few. This very wide range of current GA usage suggests that they might also 

have applicability in the area of approximating solutions to differential equations. 

One word that has often been used to describe genetic algorithms is robust. This 

adjective describes not only their versatility in a wide range of applications but also the 

manner in which they adapt within a particular application (7:1).   For example, in a 

complex optimization problem with many stationary points, GAs are not usually "fooled" 

by local optima and, when implemented correctly, stand a high probability of locating the 

region of global optimality (7:74). Convergence to such local optimal points was one of 

the drawbacks mentioned in the previous section when referring to other techniques. 

Goldberg provides much insight into the utility of GAs. In his book (7), Goldberg 

provides an excellent treatment of how GAs differ from other conventional optimization 

procedures. These differences also serve to demonstrate the versatility of GAs and how 

they overcome some of the traditional shortcomings cited by Ignizio. Some of the 

differences he mentions are 

1. GAs code the parameter set as opposed to the parameters themselves. 

2. GAs search from a population of points rather than a single point. This allows 
for more breadth in the search. Many algorithms will never converge to a 
global optimum unless given the proper starting point. 

3. GAs use objective function information directly rather than derivatives, 
gradients, directions of maximum ascent, etc. (7:7). 

4. GAs use probabilistic transition rules as opposed to deterministic ones. This 
feature is to be contrasted with those "hill-climbing" techniques that will 

2-6 



always follow the direction of steepest ascent, regardless of where the global 
optimum lies (7:7). 

These differences are central to the robustness of the algorithm. For example, by coding 

the parameter set, GAs make use of the coding similarities that exist among those 

parameter values that yield the most optimal result. The GA then builds on this 

information and continues to exploit further similarities among the most optimal 

parameter values. Because GAs work from a population of search points that can number 

in the hundreds, they do not suffer the setbacks of those techniques that search from a 

single point. Lastly, because GAs do not depend on auxiliary information about the 

objective function, they can be applied to the most pathological cases where the 

requirements of continuity and the existence of derivatives cannot be assured. 

One of the major findings reported by Goldberg concerns the genetic algorithm's 

success in problems where numerous local optima exist. He found that while GAs will 

not necessarily guarantee convergence (like some other algorithms), they do, however, 

sort out areas of space quickly. In doing so they are able to ferret out those regions of 

best parameters that are sometimes never even looked at by more traditional methods. 

Goldberg implies that by finding these regions, the GA will at least settle on an area that 

is better than those found by other methods (7:74). Convergence to the absolute 

optimum, though desirable, may not be necessary provided the GA reaches an area that is 

more optimal than the best local optimum found by other search methods. Reaching such 

an area could very well prevent Ng's method from adding unnecessary terms to the 

approximating function as previously described. Thus, one might expect that GAs have 

the potential to streamline the collocation solution technique of Ng. 

The genetic algorithm is not without its drawbacks. One drawback is that the 

algorithm, like some others, does not handle constraints explicitly. Rather, a constrained 
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problem may need to be modeled with penalty functions to ensure feasibility. At least two 

genetic algorithm software packages have been developed that automatically generate 

these penalty functions. Another weakness of the genetic algorithm is that it is not a 

particularly fast technique. Many genetic operations must be performed on each 

generation. Additionally, the algorithm must constantly code and decode the parameters 

as well as perform the mathematical operations inherent to the optimization problem on 

each individual in the population. Hence one can see that the algorithm may require more 

computational time than other procedures. Consequently, much work is being done to 

implement genetic algorithms on parallel processors. Additionally, although genetic 

algorithms do sort out areas of space very efficiently, they offer no guarantee of 

convergence. There is a class of problems that are considered genetic algorithm 

deceptive. Such problems result when the optimum solution is "surrounded" by the most 

suboptimal solutions. In this event the algorithm is likely to converge prematurely to a 

suboptimal point (7:45). Nevertheless, the countless applications where genetic 

algorithms have been used successfully suggest that these limitations are not 

insurmountable. 

The last point to be highlighted in reference to GAs is that they have already been 

successfully utilized in constrained mathematical programming models. One approach 

that has been successfully utilized has been to code the constraints as penalty functions 

within the objective function (21:191). A properly chosen penalty function will act 

exactly like a constraint by imposing a large penalty on the objective function when the 

constraint is violated. As an extension to single objective function optimization, Schaffer 

successfully solved problems with multiple objectives (23:99). Since multiple objective 

function models are essentially the same as goal programming models, Schaffer's work 

provides strong evidence that GAs can be successfully implemented in my research. As it 

turns out, my model formulation uses a variant of the penalty function method but in a 
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much simpler format. Hence it seems reasonable to conclude that the genetic algorithm is 

a viable alternate optimizing engine for the model. 
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III. Methodology 

Comparison of Compromise Programming Models 

Generalized Compromise Programming. As previously mentioned, 

compromise programming is an extension of goal programming - both of which fall 

under the general heading of multiple criteria decision making. In the typical multiple 

criteria decision making problem, a decision maker has a multitude of objective functions 

each competing for the same resources. Ideally, the decision maker would like to 

maximize ( or minimize, as the case may be) the outcome of each of his objectives. Seo's 

representation of the mathematical formulation of this problem is as follows: 

maximize      f(x) = (/,(x),f2(x), ...,fm(x)) 
xeX 

where f,(x),. .., fM (x) are M different objective functions and X is the feasible 

region (26:59-60). Since numerous objectives may compete for the same resources, some 

trade-off must ensue. The goal programming strategy to solve such a problem is to put it 

into a goal setting context. In this formulation, the decision maker sets goals for each of 

his objectives and seeks a satisficing solution that gets him as close to each of his goals as 

possible. Thus, a distance metric must be introduced to represent the closeness of an 

objective to its goal. The mathematical representation of this model is as follows: 

minimize   d(f(x),f) 
xeX 
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where f = (f,..., fM ) is the vector of aspiration levels for the M goals and d( , ) is the 

non-negative distance from the vector f (x) and its goal vector, f (26:60). The natural 

way to measure the distance between the two vectors is via a norm. 

In the compromise programming approach to the same problem, the goal vector, f, is 

simply replaced by an ideal vector, f* , which represents the maximum possible value for 

each fj (x). Thus, each aspiration level is actually the best possible outcome for the 

corresponding objective. Hence, any solution (known as a compromise solution) is 

measured in terms of its closeness to the ideal (30:314). 

In order to facilitate the mathematical modeling of the above problems, they each must 

be put into an acceptable format. To facilitate this, the set of deviational variables {nj, 

Pj} is introduced. In the goal programming construct these variables are defined as 

follows: 

nj = amount by which goal j is not met 
Pj = amount by which goal j is surpassed 

In other words, they represent the under-achievement or over-achievement of the j goals. 

Hence for a given goal, j, if both deviational variables are zero, then the goal is exactly 

satisfied. Each goal of the form 

fj(x)=0 (3-D 

is then represented as a separate constraint in the model as follows: 

fjW + nj-pj =0 (3-2) 
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Hence, each goal is converted from an objective function to a constraint of the form in 

Equation 3-2. It follows that the dimension of the problem increases as goals are added 

since each goal represents two additional variables in the model. 

In the generalized linear programming format of this model, all decision variables 

must assume non-negative values, thus necessitating a separate variable for positive and 

negative deviations. However, if an algorithm without non-negativity requirements is 

utilized, then only one deviation variable, dj, would be needed for each goal level j. It 

follows that dj has no sign restriction and can, therefore, represent either under- 

achievement or over-achievement of the goals depending on the sign that it assumes. 

At this point it is important to understand two basic schools of thought in reference to 

goal programming. The format which has just been presented is sometimes known as 

non-dominated goal programming. It carries this label because the technique will render 

a non-dominated or Pareto optimal solution. Within this technique, the relative 

importance of a particular goal in comparison to another goal may be represented by a 

weighting scheme. In such a scheme the goals with more importance are assigned higher 

weights. The other technique is lexicographic or preemptive goal programming. In this 

framework, the decision maker assigns priority levels to each of the goals. In such a 

strategy some goals may be designated as absolute - meaning that they must be satisfied. 

In the general mathematical programming framework, an absolute goal is simply a normal 

constraint that must be satisfied for the solution to be feasible. Hence a solution where 

the pj value for an absolute goal is non-zero would mean that the absolute goal is 

unattainable. In some cases there may be no need for absolute goals. Goals of lesser 

priority will be satisfied if possible but not at the expense of sacrificing a goal with a 

higher priority. If a goal with lower priority cannot be satisfied, then the solution 

procedure should attempt to come as close to satisfying that goal as possible. Here 
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closeness takes on the same sense as described above and is, hence, measured via a 

vector norm. 

In Ng's initial published research in this area (17) it is unclear as to which technique 

he utilized. In a subsequent paper (18), he clearly used the preemptive goal programming 

approach. As will become evident, I chose to utilize the non-dominated approach for this 

research. 

Regardless of the goal programming technique implemented, the objective function 

will incorporate some form of a distance metric. Before this aspect is discussed in detail, 

it is important to consider which metric is most suitable to use. The definition of a 

discrete lp norm to measure the distance dp(x, y) is given by the following: 

" \/=r 
dp(x,y)   B     Ek-y.r (3-3) 

where x and y are n-dimensional vectors and 1 < p < °°. Typically, either the lu l2, or 

L norms are utilized. While in the finite-dimensional case it can be shown that these 

three norms are equivalent, there may be good reason to use one over another. For 

example, in least squares curve fitting (which is a compromise program of special 

structure) the l2 norm is utilized for computational convenience if one can assume that 

errors are normally distributed random variables (2:52). The L norm (also known as the 

max norm) which is defined as follows 

d„(x,y)   s   maxk-y/l (3-4) 
\<i<n 

is used when the decision maker exhibits a totally non-compensatory preference structure. 

In other words, he is only concerned with minimizing the maximum distance from any 

one goal. 
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These examples raise the question: "Is there a best /p norm to use for the problem at 

hand?" This research concludes that, of the three, the lx norm is the most suitable choice 

for this problem. To justify this choice, consider the 2-dimensional "balls" of radius e 

centered at the origin with respect to lu l2, and L norms, as shown in Figure 1. The 

boundaries of a ball in this figure correspond to points where the respective norms are 

equal to e. For example, the points on the curve for lx, represent all of the possible 

vectors (x,, x2) where d,( (xl5 x2), (0, 0)) equals e . Likewise, this is also true for the l2 

and L norm curves. Let us assume that we are trying to minimize the distance dp((xl5 

x2), (0, 0)) and the termination criteria for our algorithm is that this distance be less than 

e . If the L norm is chosen as the metric, it is obvious that although each of the points 

marked "a", "b", and "c" all meet this criteria, point "a" clearly represents the vector 

that is closest to the vector (0, 0). It is the non-dominated choice of the three. However, 

if the /, metric is utilized, only point "a" represents a vector that meets the e tolerance 

that was established. Thus in the finite-dimensional case for 1 < p < °° , the /, norm is the 

most restrictive and represents the metric that is more likely to yield a truly non- 

dominated solution. This conclusion is generally well accepted and was shown in several 

empirical studies done by Barrodale where he was conducting curve fitting experiments 

(2:56). He found that in every case the /] norm provided the best fit for his data sets. 

It is important to note that this conclusion is equally applicable for n-dimensional 

space since the two-dimensional ball can be generalized to n-space. It is also interesting 

to note, if one is trying to minimize the distance dp( f(x), g(x)), where f and g 

represent continuous functions on a compact set, just the opposite is true. In this instance 

it can be shown that the continuous L«, norm is most suitable. Although this study does 

concern the approximation of functions which are likely to be continuous, the solution 

technique involves a discrete-valued function at a finite number of points. Hence the 

discrete norm is appropriate. 
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Figure 3.1 Epsilon Ball 

The last aspect of the model which requires discussion is the form of the objective 

function. Since the objective of a goal programming model is to minimize the amount 

by which the goals are not achieved, the specific form of the objective function is as 

follows: 

minimize    IU + PL 
xeX 

(3-5) 

where n and p are the vectors of deviational variables representing the amount by 

which the goals are missed. For p = 1, this representation is equivalent to minimizing the 

U distance metric of these vectors relative to the zero vector. 

Modified Compromise Programming.    As described in Chapter One, Ng's 

model was based on minimizing the residual equations at each of the collocation points. 

Thus, each residual equation was a goal. Naturally, the goal was for each residual to be 
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exactly zero. I have chosen this multi-objective model to be labeled a compromise 

programming model (as opposed to a goal programming model) since having a residual 

equate to zero represents an ideal that cannot be bettered. However, this model differs 

from Ng's in a significant way other than its name. 

Recalling that the use of a genetic algorithm necessitates transforming the constrained 

model into an unconstrained model, I had to seek a way to do so. It became apparent that 

by eliminating the deviation variables from the residual equations and simply minimizing 

the norm of the vector of residual equations would represent a completely equivalent 

formulation of the same problem. Hence, the objective function of this modified 

compromise programming model is as follows: 

M 

minimize T" 7?(c, ,*,)l- (3-6) 
c,J=l,2,...N      T-fl ' J   < 

7=1 

Although this is an equivalent representation of the generalized model, it is modified in 

the sense that both the deviational variables and constraints have been eliminated. 

In this study, treatment of the boundary conditions must also be considered. It turns 

out that this involves only a slight modification to the model. While Ng was able (in 

some instances) to choose test functions that would automatically satisfy homogeneous 

boundary conditions regardless of the number of terms, this may not always be easy. In 

such a case, all that needs to be done is to form additional residual equations 

corresponding to the boundary conditions. For example, a boundary condition such as the 

following 

«'(0)    =    0 (3-7) 
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would be transformed into the following residual equation 

RB(0)   =   5>,-^(0) = 0 (3-8) 
,•=!     dx 

This boundary residual would then be added to the other residuals to form the complete 

objective function. For rigid boundary conditions, Ng's lexicographic approach would 

necessitate considering the boundary conditions as absolute goals requiring additional 

constraints. In the modified compromise programming approach, the rigidity can be 

simulated by incorporating a positive valued multiplicative weighting factor into the 

boundary residual, Equation 3-8. 

The choice of the /, norm is easily incorporated into the genetic algorithm. This is a 

somewhat subtle advantage of the algorithm since I am minimizing over a non- 

differentiable function (due to the absolute value).   Special modifications to other "hill 

climbing" algorithms would be required because of this fact. 

Solution Procedure 

For each of the problems that have been solved, the following iterative procedure was 

used. 

1.) Choose ten evenly spaced collocation points over which to minimize and an 
initial three term test function, (i.e., set i = 3) 

2.) Execute modified compromise program model minimizing over the U norm of 
the residual vector. If the residual norm at iteration i is at least ten percent smaller 
than the residual norm at iteration i -1, then proceed to step three. Otherwise, stop. 

3.) Add another trial function and return to step two. 
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This procedure was also used for a twenty point and a one hundred point collocation 

model. Additionally, it was executed with a ten point collocation model where the 

spacing of the points was adjusted so as to emphasize key areas of the domain such as 

around boundaries and in the vicinity of a shock. 

Genetic Algorithm Parameter Settings 

Numerous studies have been done to determine if there is such a thing as optimal 

parameter settings for genetic algorithms. Most research has considered varying the 

population size, cross-over rate, and mutation rate (see Appendix A). This work has 

produced no universally accepted specific results. In fact some of the research directly 

contradicts other research while some other studies have produced unrealizable results. 

For example, one particular analytical approach concluded that the optimal population 

size for a given problem was zero (6:4). It seems apparent that the stochastic nature of 

the algorithm makes such analysis difficult if not impossible. When the studies have 

produced specific results, these results tend to apply only to a certain problem and cannot 

be universally applied to all problems. However, some useful conclusions can be made 

on the ranges of the parameter settings. 

A detailed study performed by Schaffer indicated that good performance can be 

achieved with population sizes of twenty to thirty, cross-over rates ranging from 0.75 to 

0.95, and mutation rates from 0.005 to 0.01 (24:55). Another study he performed 

indicated that the use of Gray coding improved performance by eliminating Hamming 

cliffs (see Appendix A for a description of Gray coding and Hamming cliffs) (24:59). 

In consideration of these studies I utilized Gray coding and ran each model with three 

distinct sets of parameter settings as follows 
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Setting 1: Population size = 20; Cross-over rate = 0.75; Mutation rate = 0.005 . 

Setting 2: Population size = 30; Cross-overrate = 0.95; Mutation rate = 0.01 

Setting 3: Population size = 20; Cross-over rate = 0.90; Mutation rate = 0.075 

The software I utilized, Genesis (9), also permitted the use of an elitist strategy wherein 

the most fit individual of each population is automatically selected to reproduce. This 

computer program was implemented on a Sun Sparestation 20 computer. 

Measures of Effectiveness 

Quantitative Measures. In determining the validity of the results for each 

problem studied several quantitative measures have been utilized. The first is simply the 

/, norm of the residual vector over ten evenly spaced points. If this norm is on the order 

of 10', then this would indicate a good solution. When an exact solution for a problem 

is available, I shall also present the 1( norm of an error vector measured over ten evenly 

spaced points. Here, the term "error" indicates the absolute difference between the exact 

solution, f(x) , and the approximated solution, v(x), over those ten points. This metric 

(as opposed to the residual metric) actually gives a better indication of the quality of the 

solution since the overall goal is to get an approximation of the exact solution. 

Additionally, I compared critical values of my solution to other known exact or 

approximated solutions. For example, in the Navier - Stokes problem, an empirical 

solution determined by Froessling indicated that the value of the wall sheer stress /"(0) 

equals 1.312 (25:98). Other such comparisons may be available on the various problems. 

Qualitative Measures. The primary qualitative measure of effectiveness will 

involve analyzing the graph of the solution. Ideally, this graph should compare well with 

the graph of an exact or other well accepted approximated solution. 
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IV. Worked Examples 

Navier - Stokes Equation 

Problem Description. This problem was the first one presented by Ng in his 

original paper. The Navier - Stokes equations model fluid flows and generally include 

equations that govern mass conservation and momentum balance. For the case of 3- 

dimensional, axi-symmetric fluid flow with stagnation, where the fluid strikes a surface 

perpendicularly and is allowed to flow away in all directions, the Navier - Stokes 

equations can be greatly simplified resulting in the following dimension-less differential 

equation (25:101): 

f'" + 2ff" + l-f'2    =   0 (4-1) 

with boundary conditions as follows: 

/(0)   =   /'(0)   =   0   and 

lim /'(*)   =   1. 
(4-2) 

on the interval (0, °°). 

Although no solution to this problem was available, a graph of the function as well as 

tabular data taken from a paper by Froessling (25:98-100) will allow for direct 

comparison of the solutions. For example, Ng cited Froessling's empirically determined 

value of /"(0) =1.312 as a validation point. Additionally, the dashed line in Figure 4.1 

represents a graphical representation of the fluid velocity for the exact solution. 

4-1 



IS 

1.4 

1.2 

1.0 

O.S 

0.5 

OA 

02 

/ 

V" u 

two-dimensioml 
axiaiiy 

..... 

 ' 
// 

If 

if 

  

symmetrical 

  

  

OA      0.8      12       1.6      2.0     2A      2.8     3.2 

Figure 4.1 Velocity distribution of flow at a stagnation point (Reprinted from 
Schlichting(25:100)). 

In order to allow for direct comparison with Ng's solution, I have utilized his same 

trial functions as follows: 

<t>,(;c)   =   -l + e x +x, 

()).(x)    =   {i-Y)-ie~x +e~ i' = 2,3,... 
(4-3) 

The special construction of these trial functions is an example of where the homogeneous 

boundary conditions are automatically satisfied by the approximate solution. 

Solution and Analysis.   Table 4.1 summarizes the quantitative measures of 

effectiveness for the various solutions as well as for Ng's solution. It can be seen from 

this table that my results compare very favorably with those reported by Ng. While my 

solutions tended to produce "better" residuals, he achieved a better value of /"(0) as 

compared to the value determined by Froessling.   Additionally, comparison of the graph 
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of my solution for the ten evenly spaced collocation point model (Figure 4.2), with the 

graph presented in Schlichting (Figure 4.1) shows that my results yield a velocity profile 

that is very similar to the axially symmetric case. 

# collocation 

points 

Spacing li norm resid. 

(lOpts) 

12 norm resid. 

(16 pts)1 

f"(0) Comments 

10 even 0.1183 0.0902 1.397 

20 even 0.1445 0.0883 1.403 

100 even 0.1524 0.0868 1.402 

10 uneven 0.1771 0.10506 1.408 

16 even 8.15 3.309 0.556 Ng Actual 2 

16 even unknown 0.0971 1.313 Ng Reported 

Table 4.1 Quantitative results for the Navier Stokes solutions. 

Each of my models, as well as Ng's, required the use of four trial functions in the test 

function. With the exception of Ng's results, the calculated values for the unknown 

coefficients of the trial functions were very similar to one another. These values and 

those determined by Ng are summarized in Table 4.2. 

1 Although I utilized the li norm over ten points as the optimization metric, Ng utilized the 12 

norm over sixteen points. For comparison purposes both values have been reported in this 
table. 
2 There is a discrepancy between Ng's reported results and my verification of his calculations. 
Therefore, I am reporting his results as I calculated them and as he reported them. 
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Figure 4.2 Velocity distribution of Navier Stokes solution using ten evenly spaced 
collocation point model. 

Model: Cl c2 C3 c4 

10 (even) 1.2721 1.0570 -0.5536 0.1112 

20 (even) 1.2800 1.0412 -0.5501 0.1120 

100 (even) 1.2701 1.0465 -0.5509 0.1120 

10 (uneven) 1.2489 1.0681 -0.5407 0.1056 

Ng 1.1062 -0.199996 -0.224996 0.099997 

Table 4.2 Coefficients of the trial functions for the Navier Stokes solutions. 

Linear Boundary Value Problem 

Problem Description.    A scheme designed to approximate the solution of 

nonlinear boundary value problems should at least be able to accurately approximate 
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solutions of linear problems. To demonstrate that this is indeed true for this solution 

technique, I also solved the following linear differential equation 

r + 7U2/   =   -(* + l) (4-4) 

on the interval (-1, 1) with boundary conditions 

/(-l)   =   /(l)   =   0. (4-5) 

The exact solution to this problem is as follows: 

f(x) -sin(7C.x) -(* + l). 
71 % 

For the test function, I used a combination of Chebyshev polynomials which are 

orthogonal on the interval (-1, 1). The form of the nth trial function is as follows: 

<!>„(*)    =    Tn(x)   -   n2T,(x)   -   (n2+(-!)" )T0(x) (4-6) 

where 

Tn{x)   =   cos(ncos \x)) 

is the nth degree Chebyshev polynomial. This peculiar formulation is another example 

where the test function has been specially constructed so that the homogeneous boundary 

conditions are automatically satisfied. 
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Solution and Analysis.   As expected, the modified compromise programming 

solution produced excellent results for this problem. For each of the models, a four term 

test function provided the best solution. Table 4.3 summarizes the quantitative solution 

results. Note that since an exact solution, f(x), is available for this problem the li norm 

of an error vector over ten evenly spaced points is also presented. 

# of collocation 

points 

Spacing li norm of residual 

(10 points) 

li norm of error (10 

points) 

10 even 0.1391 0.0138 

20 even 0.1982 0.0103 

100 even 0.2537 0.0036 

10 uneven 0.1437 0.0143 

Table 4.3 Quantitative results of linear boundary value problem. 

While each of the solutions is very good, the solution using the 100 collocation point 

model is clearly the best. A graph of this solution compared to the exact solution is 

presented as Figure 4.3. The two solutions are so similar that their graphs cannot be 

readily distinguished from one another. Table 4.3 clearly shows an improvement in the 

error as more collocation points are used in the model. It is interesting to note that the 

same cannot be said of the residual values. While the 100 collocation point model had 

the smallest error, it did not have the lowest residual. A discussion of this seemingly 

contradictory result is presented in Chapter Five. Table 4.4 provides the coefficients for 

the solutions of the various models. 
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Figure 4.3 Comparison of exact solution of the linear boundary value problem with 
solution from the 100 point model. 

Model Cl c2 C3 c4 

10 even -0.00017 0.01981 0.00003 -0.00237 

20 even -0.00106 0.02047 0.00035 -0.00262 

100 even 0.0001 0.02162 -0.00006 -0.00296 

10 uneven -0.00096 0.01975 0.0000755 -0.00239 

Table 4 .4 Coefficients of the trial functions for the linear boundary value problem. 

The Steady Burgers Equation 

Problem Description. The Burgers equation which models advection and 

diffusion is a well studied problem in fluid dynamics. Its nonlinearity makes it an ideal 

equation for the study of turbulence and shock-waves (22:13). The one-dimensional 

form, which governs the advection and diffusion of one colored liquid in another, is as 

follows: 
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/-|l-r-v-r = o v>0 (4-7) 

on the interval (-°°, <»). The exact solution to this equation is the following 

/<*) - \ 1 - tanh 
f x ^ 

V4-Vy 
(4-8) 

While there are no specific boundary conditions on this system, an asymptotic analysis of 

the exact solution yields the following 

lim f(x) 1 and lim/W   =   0. 

Additionally, it is obvious from the exact solution that f(0) = 0.5. In order to avoid 

converging to a trivial solution (f(x) = 0) to the differential equation, Equation 4-7, the 

asymptotic limits need to be enforced as boundary conditions. Having access to such 

information a priori is not an unreasonable assumption as the engineer in need of the 

solution is likely to be keenly aware of such information about the system under study. 

Hence, the steady Burgers equation can be modeled as a boundary value problem. 

To devise an appropriate test function for the solution, a priori knowledge is again 

useful. Here, it is important to realize, that as v approaches zero, the equation is 

modeling a shock-like structure imparted on the physical system as can be seen in Figure 

4.4. With this information as well as some knowledge about the "boundary" conditions, 

I chose the following test function: 

v (x)   =   cx (c2 - arctan(c3 x)) (4-9) 
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With this particular problem I decided to disregard the "modular" approach as described 

in the methodology whereby successive terms are added to the test function for 

improvement. Instead I chose to solve the problem with a simple test function as shown 

in Equation 4-9. Unlike the previous problems this test function does not automatically 

satisfy the boundary conditions. Therefore, I implemented weighted boundary residuals 

into the objective function to try to enforce those conditions. For each of the models, 

experimentation showed that a weighting factor of 25 was sufficient to satisfy these 

conditions to a reasonable degree (usually out to the fifth decimal place). 
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" "   Exact solution: nu = 0.01 

Figure 4.4 Graph of exact solution to the Burgers equation for two values of v. 

Solution and Analysis.   The quality of the solutions of the Burgers equation 

was mixed - depending on the model utilized. Table 4.5 summarizes the quality of the 

results. Because an exact solution was available, the h norm of the error vector is 

presented. Additionally, I have also included the l\ norm of the residual and the error 
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vectors over 100 evenly spaced points. These statistics shall prove useful in the 

interpretation of the results. 

# collocation 

points 

Spacing linormresid. 

(10 points) 

li norm resid. 

(100 points) 

li norm error 

(10 points) 

li norm error 

(100 points) 

10 even 0.2397 47.3365 0.5041 4.8143 

20 even 0.2397 47.3363 0.5041 4.8143 

100 even 0.9853 15.6873 0.2522 2.1210 

10 uneven 0.4822 4.7590 0.5706 5.5304 

Table 4.5 Quantitative results for the solutions to the Burgers equation. 

Several important observation can be made from these results. First, the quality of the 

solution for the 100 point model was much better than that of the other models (See 

Figure 4.5 and Figure 4.6). In fact, there was only a small difference in the results for the 

ten and twenty evenly spaced point models. When comparing the residual metric over ten 

points, one might conclude that the 100 point model produced inferior results. However, 

when comparing the same metric as well as the error metric over 100 points, this model 

stands out as the best. One can conclude that by minimizing over significantly more 

points, the effect of the shock was better captured. 

Another significant observation can be made in regard to the unevenly spaced model. 

Here, I chose to cluster the majority of collocation points about the origin as this seemed 

to be the critical part of the domain where the most change was occurring. Doing so did 

not actually improve the solution in comparison to the ten evenly spaced model when 

looking at the metrics over ten points. However, the uneven spaced model had a 

significantly lower residual taken over 100 points. One might conclude that clustering 

the points as such forced a solution that could better take into account the rapid change 
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that occurred in this area. As an illustration, consider the values of the residuals at a point 

near the origin, x equal to 0.01 (which was a collocation point in the unevenly spaced 

model but not the other). Due to the large magnitude of the first and second derivatives 

in the evenly spaced model solution at this point, the residual would have been 76.1. 

However, since the evenly spaced model did not use collocation points so near the origin, 

the large magnitude of these values was not taken into account in the minimization 

process. Hence, we have the very sharply descending curve as shown in Figure 4.6. This 

graph shows a comparison of the exact solution to the solutions generated by evenly and 

unevenly spaced ten point models.   Since x = 0.01 was a collocation point in the 

unevenly spaced model, a much better representation of the functional characteristics near 

the origin is achieved as can be seen in the figure. Although one cannot claim that either 

one of the solutions is better than the other, it can be said that the solution via the 

unevenly spaced model better reflects the physical properties of the system in the vicinity 

of the origin which may be the area of most interest to the engineer. 
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Figure 4.5 Comparison of the Burgers equation exact solution with approximate 
solution from 100 point model. 
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f(x): Exact Solution 
" "   Solution via Evenly Spaced Model 

Solution via Unevenly Spaced Model 

Figure 4.6 Graphical comparison of the Burgers equation exact solution to the 
solutions obtained via the evenly and unevenly spaced ten point models. 

Model: C-l c2 c3 

10 even 0.3204 1.5607 100.0000 

20 even 0.3204 1.5608 99.9977 

100 even -0.3317 -1.5073 -15.7101 

10 uneven -0.3745 -1.3351 -4.1645 
Table 4.6 Coefficients of the trial functions for the solutions to the steady Burger 

equation. 
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The Steady Fisher Equation 

Problem Description. The Fisher equation has been used to model various 

phenomena such as population growth with dispersal, the propagation of a virile mutant 

in an infinitely long environment, and the neutron population in a nuclear reaction 

(16:581). The form of the time independent ordinary differential equation is given as 

follows: 

/"(*) +A,/(*)(!-/(*))   =   0 X >0 (4-10) 

with boundary conditions 

/(0)   =   0       and       /'(0)   =   -| 

This differential equation corresponds to a nonlinear oscillation which conserves total 

energy given by 

i ...., ..a „, „  i„ ^ (4-11) E    =    l-f\xY+%{^-f{xY-l-f{x)^ 

Due to the conservation of energy in the system, we now have another measure of the 

quality of the approximate solutions - that is, the extent to which energy is constant or 

conserved in the approximate solutions. Although no exact solution to Equation 4-10 is 

available, Mickens developed a "best" finite difference scheme to model the solution. 

This scheme will also be used to compare solutions. 
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For the test function I used a set of Laguerre functions which are orthogonal on the 

interval (0, °°) defined by 

m,x) = 4-TT(*'V) i\  ax x       ' 

Hence, the general form of the test function is 

v(ct,x)   =   £c, ■!#,*) (4-12) 
( = 0 

Solution and Analysis. Table 4.7 shows the quantitative description of the 

results. In the absence of an exact solution, I have used Mickens' finite difference 

solution as the benchmark to calculate an approximate error norm. Again, there is a wide 

disparity among the values of the metrics for the various solutions. For each of the 

solutions the boundary conditions were satisfied to four or five decimal point accuracy. 

Some similarities can be drawn from these results compared to some of the results for the 

other problems. For example, from Table 4.7 and Figure 4.7 we again see that the best 

solutions do not always correspond to the solution with the smallest residual norm. In 

fact the ten evenly spaced point model yielded a very good approximate function yet had 

the highest residual norm. 

It is also interesting to note that in three of the four models, the residual norm was an 

order of magnitude larger than the error norm measured over the same points. This 

observation could also be made with the linear problem already presented. This 

peculiarity seems more pronounced in the Fisher results since the respective residual 

norms are so large. Hence, it seems that Ng's desire to yield very small residuals may 

have been an overly restrictive objective. 
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# collocation 

points 

Spacing li norm residual 

(10 points) 

li norm error 

(10 points) 

10 even 5.1370 0.1767 

20 even 2.7820 0.2984 

100 even 5.0046 0.4779 

10 uneven 4.7314 1.1294 

Table 4.7 Quantitative results for the solutions to the Fisher equation. 

A few observations can be made in regard to the graphs of Figure 4.7. First, 

minimizing over 100 points did not improve the quality of the solution. This solution 

was poor in terms of both the residual and the error. Since the underlying function is 

fairly smooth we would not expect great improvement in the solution by minimizing over 

many more points. However, we would also not expect such a profoundly worse 

approximation. My only conjecture as to the cause of this result is that the weighting 

scheme on the boundary residuals could have used some further adjustment. 

A similar observation can be made for the unevenly spaced model. For the result 

shown in Figure 4.7,1 concentrated the collocation points in the vicinity of x = 1 since 

this is where the approximating functions in previous solutions were weakest. However, 

this scheme actually made the solution worse. I also tried other location strategies, such 

as near the origin: each strategy had results worse than the evenly spaced solution. 

Additionally, I attempted to weight the collocation residuals in the vicinity of x = 1 — 

again with no improvement. 
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Finite Difference Solution 
10 (even) Model Solution 

Finite Difference Solution 
100 (even) Model Solution 

Finite Difference Solution 
20 (even) Model Solution 

(b) 

Finite Difference Solution 
" "   10 (uneven) Model Solution 

(c) (d) 
Figure 4.7 Graphical comparison of the Fisher equation solutions via (a) 10 pt. 

(even); (b) 20 pt.; (c) 100 pt.; and (d) 10 pt. (uneven) models. 

Results for conserved energy property were also mixed. Again, the best results were 

obtained from the ten and twenty point evenly spaced models. Figure 4.8 represents the 

energy function on the interval of study for the twenty point model. This graph exhibits a 

fairly constant function over the first half of the interval, with a gradual increase toward 
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the end. This characteristic is fairly consistent with finite difference approximations of 

initial value problems as the error grows as the number of steps taken. Note that the scale 

of the graph makes the increase appear more pronounced than it actually is. 
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Figure 4 .8 Graph of energy function for the 20 point model (Fisher equation). 

The trial function coefficients for the Fisher solutions are presented in Table 4.8. For 

each model, the best solution involved a five term test function. Note, that the indexing 

of the coefficients starts with zero as shown in Equation 4-12. 

Model: Co Cl c2 C3 c4 

10 even -1.0299 4.1323 -1.0222 -2.7328 1.6526 

20 even -1.1160 4.7322 -2.8004 -0.5854 0.7813 

100 even -1.0829 5.0367 -3.1831 -0.9126 1.1418 

10 uneven 0.1640 0.1985 1.7272 -1.2057 0.1161 

Table 4.8 Coefficients of the trial functions for solutions to the Fisher equation. 
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V. Observations and Recommendations 

Observations 

Validation of Ng's Work.   The results of my research provide independent 

validation of the general problem solving framework developed by Ng. As suggested by 

Ng, the overriding advantage is simplicity by eliminating the need to solve simultaneous 

nonlinear equations. This technique is likely to be just as useful in other applications. As 

stated in Chapter One, the method avoids some of the complications inherent to other 

techniques and is easily adaptable to many classes of problems. In addition the method 

provides a unique multi-disciplinary approach to complicated problems. 

Modified Compromise Programming. This research was also successful in 

demonstrating the utility of the modified compromise programming model. The results 

indicate that the modification of the generalized compromise programming model is a 

legitimate transformation which produces very good solutions. More importantly it does 

so by simplifying the model without sacrificing the quality of the solution. Such a 

modification is equally suitable for any optimization algorithm regardless of whether or 

not the algorithm accepts explicit constraints. Hence, the model could be implemented 

within virtually any nonlinear optimization approach such as simulated annealing, another 

evolutionary algorithm that requires special handling of constraints. 

Genetic Algorithms.   Because of the high quality of solutions obtained, this 

research provides further verification of the utility of using genetic algorithms in 

nonlinear optimization problems. Although I did not implement the model on any other 

optimization algorithms, the quality of the various solutions indicates that the genetic 
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algorithm is a very robust global optimizing technique. It would be interesting to 

compare the solution quality with that of other more traditional algorithms. As a side 

"experiment" I solved Burgers equation with a test function that included the hyperbolic 

tangent which was in the exact solution. Within the decimal accuracy inherent to the 

algorithm and computer, the algorithm quickly converged to the exact solution. This 

experiment provides further validation of the compromise programming technique and 

the use of genetic algorithms as a whole. 

This study also allows for an observation regarding the stochastic nature of the genetic 

algorithm. By solving each problem using the three different parameter settings on the 

algorithm mentioned in Chapter Three, I found there was no uniformly best setting. 

While for each setting the algorithm tended to converge to its optimal solution in roughly 

the same amount of generation evaluations, the solutions were often of varying quality. 

At times these differences were significant. For example, in one stage of computer runs 

for the Navier - Stokes problem, the residual obtained using Setting 1 was 0.104 while 

the residual achieved for Setting 2 was 0.766. Such instances not only demonstrate the 

effects of chaos theory in action but also bring attention to the usefulness of varying the 

parameter settings. Doing so seems to add some vitality to the solution process. 

The last observation with regard to genetic algorithms is simply that the parameter 

settings I utilized appear to have been appropriate. Early in my research process, I had 

experimented with settings and often ran the model with much higher population sizes — 

typically 100 or 200. I also used varying rates for cross-over and mutation. Due to the 

much higher population sizes these runs took much more computational time to complete. 

However, the solutions obtained were no better than those obtained via the three 

parameter settings that I subsequently standardized. Hence, for this set of problems there 

seemed to be no need to use large populations. 

5-2 



Weighted Boundary Residuals. In solving the steady Fisher and Burgers 

equations I had to implement weighted boundary residuals in the objective function as 

individual penalty functions. In contrast, Ng had used lexicographic or preemptive goal 

programming whereby he treated boundary conditions as explicit constraints. Based on 

my results, which showed that the boundary conditions were satisfied to a high degree of 

accuracy, it appears that the weighted residual approach served its purpose. In all 

instances, a weight ranging from ten to twenty-five on each boundary residual was 

sufficient. This result is not exactly what I had expected. I had assumed that the 100 

point models would require a larger weighting (i.e. on the order of 100) to compensate for 

the fact that the model minimized over a much larger number of collocation points. 

However, when utilizing such high weights the algorithm appeared to sacrifice 

satisfaction of the collocation point residuals in order to minimize the effect of the 

weighting on the boundary points. Hence, the boundary conditions would be easily 

satisfied but only at the expense of the other residuals. On the other hand, small weights 

on the boundary residuals (such as unity) were not large enough to "force" reasonable 

satisfaction of the boundary conditions. 

Collocation Theory.   The general theory behind collocation methods for linear 

differential equations is well documented. In general, collocation is the process of 

interpolating the image of the solution under the differential operator. We assume that if 

we approximate the image well in the range space of the operator, then the solution will 

be approximated well also. For certain linear operators and subspaces, collocation 

solutions exist and are unique. In such cases we can get an estimate of the error, II f(x) - 

u(x) II (20:274).   However, I could find no such documentation for nonlinear boundary 

value problems.   While normal collocation has been successfully used to solve nonlinear 

problems, it is done more as a "matter of faith" based upon experiences with linear 
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problems as opposed to explicit theoretical estimates. Likewise, I could find no relevant 

theory for the application of compromise programming for nonlinear differential 

equations. However, my research in conjunction with that of Ng indicates that, in the 

absence of well grounded theory in this area, there is at least practical "field" application 

of the concept. 

However, even though successful application of the procedure has been demonstrated, 

the results of this study indicate that caution must be used when implementing it. This 

research has documented several instances where a model that produced the smallest 

residual did not necessarily yield the best solution. Additionally, those models with 

seemingly large residuals sometimes produced very good results in terms of error. Hence, 

it seems that one should use this new technique only when there is strong insight into the 

expected solution. Otherwise, good solutions could be discarded, whereas inferior 

solutions might be accepted. 

Choice of Collocation Points   The results of this research indicate that the 

strategic choice and spacing of collocation points can be critical in obtaining a good 

solution. Here, I refer to the linear boundary value problem and the Burgers equation. In 

such problems where a shock is present, we can expect that a concentration of points in 

the vicinity of the shock should improve the quality of the solution or at least the 

interpolation. For example, Prenter presented a simple Lagrangian interpolation problem 

using even spacing. However, this distribution of collocation points produced a solution 

with very high error at the endpoints. An interpolation using points concentrated around 

the endpoints would have produced a superior solution (20:38-39). Yet, as noted in the 

Fisher example, a concentration of collocation points in an area of concern yielded a 

drastically worse solution than had already been obtained. 
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Choice of Test Functions. Although very little discussion about the proper 

choice of test functions has been presented, this matter proved to be an important 

consideration. Naturally, knowledge about the physical system being modeled can only 

help in the proper selection of a test function. For example, on an infinite domain one 

would probably not use polynomials to represent a function that was known to "level off 

at a certain point. This is because a polynomial will always tend toward positive or 

negative infinity at the extremities. 

The Burgers example was a situation where the test function proved crucial. For my 

test function, I had initially chosen a combination of Chebyshev polynomials that were 

very similar to those used for the linear boundary value problem. I did this out of 

consideration of trying to satisfy the homogeneous "boundary" conditions. However, this 

function produced some very poor results and was, therefore, abandoned for a test 

function that I believed could better model the shock that was being modeled. The result 

was a much better approximation. It is interesting to recall the earlier reference in this 

chapter where I used a test function that closely resembled what I knew to be the exact 

solution for the Burgers equation. In this experiment, the procedure quickly converged to 

the exact solution. Hence, it is clear that a skillfully chosen test function has great impact 

on the quality of the solution. 

Recommendations for Further Study 

Choice of Collocation Points. While some conclusions about the location and 

number of collocation points have been made, there is room for more research in this 

area. At times the results were somewhat counter-intuitive and, hence, might benefit 

from further study. Each of the examples in this study was done over a relatively small 

domain even though there may have been some interest in the solution over much larger 
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intervals. Does expanding the domain necessarily require the addition of more 

collocation points? It seems clear that the number and location of collocation points 

needed for a good solution is problem dependent. However, analysis of a number of 

problems might provide some guidelines in this area. For any study where such specific 

relationships are trying to be determined, I would recommend the use of a more 

deterministic algorithm that is not subject to randomness inherent to the genetic 

algorithm. 

Error Analysis. While the literature is full of error analysis for linear 

collocation, the same cannot be said of nonlinear collocation. Hence, it might be that 

certain nonlinear problems are not suited for collocation. Numerical analysis in this area 

might prove helpful and prevent a waste of effort in field applications. Such a study 

would require much mathematical rigor is not likely suited for a master's level thesis. 

Termination Criteria. As mentioned in Chapter Three, I utilized a somewhat 

modular approach in building the test functions. Whenever significant reduction in the 

norm of a residual could be achieved, another trial function would be added. However, 

this method raises some interesting issues. For example, we have seen that the best 

solution did not always correspond to the solution with the smallest residual. It is quite 

likely that I discarded some very good solutions based on the criteria I utilized. 

Additionally, it would be beneficial to be able to set guidelines that would cause the 

algorithm to terminate when it could no longer significantly reduce the amount of 

explanatory error. Such an approach is utilized in step-wise regression where it work 

very well. However, since very little has been published about error analysis of nonlinear 

collocation, this recommendation is not likely to be tackled successfully without already 

having conquered the error issue. 
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Other Classes of Problems.    This study did not investigate multi-dimensional 

differential equations. While those problems studied do have two- and three- 

dimensional variants, I only worked on the one-dimensional equivalents. Since such a 

simplification may not always be desired, this research could benefit from 

experimentation with higher dimensional problems. Additionally, this study only probed 

the time independent forms of otherwise non-steady partial differential equations. Hence, 

it seems a natural extension to modify the technique to accommodate non-steady 

problems. Such studies might be appropriate for a graduate level research effort. 

Conclusion 

This research investigated a new multi-disciplinary technique of solving engineering 

problems with notable results. Because this work called on the skills of several 

disciplines, the successful application of this technique in the field would greatly benefit 

from a team of operators with experience in the respective disciplines: mathematical 

science, operations research, and engineering.   The mathematician's understanding of 

functional and numerical analysis combined with the engineers keen insight into the 

physical aspects of the problem will allow the operations researcher to package the 

process into an efficient problem solving format. The end result is likely to be the 

successful application of a robust problem solving technique. 
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Appendix A : Genetic Algorithms 

Introduction 

The Genetic Algorithm (GA) is a probabilistic algorithm that has received much 

attention for its robustness as applied to optimization problems. As algorithms go, the 

genetic algorithm is fairly young; Holland is credited with its development in the early 

1970's (11). As the name implies, genetic algorithms are based on the well known 

principles of natural selection among the plant and animal species. The genetic algorithm 

treats optimization as a game of "survival of the fittest" wherein the best "species" divide 

and conquer while those not capable of competing are doomed to extinction. 

Consequently, genetic algorithms make use of the basic genetic operations of 

reproduction, crossover, and mutation, albeit in an artificial sense. The key to applying 

these operations to an optimization problem is through an encoding scheme designed to 

take advantage of these powerful tools of nature. 

Genetic Algorithm Basics 

Population.   The population for the genetic algorithm is a fixed number of 

individuals that undergo the three genetic operations. For the simple genetic algorithm 

(SGA), the number of individuals in the population, n , remains constant so that when 

some individuals "die" they are replaced by others. Ideally they will be replaced by 
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individuals better suited to survive. The value of n is selected by the user and typically 

ranges from twenty to two hundred. 

Coding. As in nature, these individuals have an inherent coding scheme that 

holds all of their genetic information. For example, consider a problem with a population 

size of four individuals (n = 4). Each individual in this example will be comprised of a 

single gene of equal length. To represent the genetic code, an alphabet must be used. 

Although the binary alphabet of   "O's" and "1 's" is the most common, genetic 

algorithms are not restricted to this coding scheme. Decimal, octal, hexadecimal, etc. are 

all valid means of encoding the genes. Before continuing with the example, it is 

important to first explain what information these genes actually hold. 

Each gene is actually the coded representation of the value of the decision variables 

utilized in the optimization problem. The single-gene individual in this example actually 

represents a single decision variable. For optimization problems of several variables, the 

individuals in the population can be comprised of string lengths representing a 

concatenation of the individual genes. For example, suppose that these genes contain just 

five characters in their genetic code. One such gene might look like this: 00101. 

Knowledge of binary numbers tells us that this gene represents a decision variable with 

the decimal equivalent: 5.   As previously stated, individuals may be comprised of several 

genes — each representing a different decision variable. Now consider the following 

three-gened individual: 001010001011100. Separating this individual into thirds yields 

the genes 00101, 00010, and 11100 with the decimal equivalents of the decision variables 

being 5 , 2, and 28 respectively. Naturally, a gene length of five (/ = 5) characters is very 
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limited as it can only represent the integers 0 through 31 (i.e., 2l- 1).   Necessarily, most 

practical problems require gene lengths to be much longer. 

As shall be seen, genetic algorithms exploit the similarities in coding of the most 

highly fit individuals. In general, consecutive decimal numbers will have similar binary 

codings. For example, the normal binary coding of the numbers 200 and 201 is 

1 1001000 

and 

1 1001001 

respectively. Note the similarities in the coding of these two numbers. However, now 

consider the binary coding of two other consecutive decimal numbers, 127 and 128 given 

by 

01111111 

and 

10000000 

respectively. These two codings could not be any more different. This peculiarity is 

known as a Hamming cliff.   Since genetic algorithms have been shown to work best 

when similarly valued decimal numbers are coded similarly in binary form, another 

coding known as Gray coding is often used (5:874). Gray coding is a system that ensures 

that the coding of consecutive integers will differ at only one bit position. 

The Fitness Function. The fitness function (more commonly known as the 

objective function in most optimization problems) is the means to evaluate the suitability 
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of each individual in the population. A relative scaling system is used in order to 

compare one individual's fitness with the others. As one might expect, those with the 

highest fitness level have the highest probability of being selected to carry on the three 

genetic operations that will affect future generations of the population. As shall be seen, 

this is where the non-deterministic nature of the algorithm takes hold. The probability 

that an individual is selected to reproduce and carry on the other genetic operations is 

proportional to the fitness of that individual relative to the population. 

Genetic Operators 

Reproduction. Reproduction, also known as selection, is simply the process of 

individuals in the population being exactly duplicated to fill the positions in the next 

generation. The probability that an individual reproduces is proportional to that 

individual's fitness relative to the population. This selection process is controlled by the 

spin of a simulated roulette wheel which is "spun" n times. Hence, it is possible that 

some individuals may produce multiple offspring (each one identical), while other 

individuals may not produce any offspring. 

In order to maintain each successive generation at a constant population size, as 

required by the algorithm, no more operations are performed on the "parent" population 

once they reproduce. These individuals (as well as those not selected to reproduce), in 

effect, die. All subsequent operations are performed on future generations. However, 

some modifications to the basic genetic algorithm call for an elitist strategy wherein the 

most fit individual of a generation is always selected to reproduce itself at least once. 
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This strategy ensures the preservation of the best genetic material so as not to leave the 

fate of future generations strictly up to chance. 

For an illustration of how the roulette wheel analogy is applied, consider the example 

of a four member population (n = 4) for a fitness function that is to be maximized. For 

this example, I will ignore the actual form of the notional fitness function and accept that 

the fitness levels as shown in Table A.l are accurate. This simple example shows that the 

fitness level (third column) for individual number 1 accounts for one half of the sum of 

all fitness values, thus giving it a relative fitness (fourth column) of 0.5.   In this example 

the total number of slots on the wheel is equal to the number in the population (although 

other schemes are possible). Thus, in spinning this wheel four times, one can see that 

individual number 1 has the highest probability of reproducing itself. 

Individual 
(i) 

Genetic 
Code 

Fitness 
(fi) 

Relative Fitness 
(r = fi/n) 

Number of Slots on Wheel 
(nxr) 

1 OHIO 50 .50 2 

2 00010 0 0 0 

3 11000 25 .25 1 

4 01100 25 .25 1 

Total 100 1.00 4 

Table A.l Four member population example. 
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This example only presents the very basic fundamentals of selection. It does not take into 

account such things as negative fitness values, non-integer values for number of slots, and 

procedures of selection for minimization problems. Such situations are easily handled by 

slight modifications of the algorithm that still keep intact the same basic principles. 

Crossover. Crossover, also known as recombination, is the means by which 

genes exchange their genetic material with one another. With crossover, there are two 

probabilistic elements:  1) which genes are selected to cross; and 2) where they cross, 

once selected. Generally, the probability for each event is fixed and does not vary with 

fitness level as does reproduction. When two genes are selected to cross at a selected 

point, they are simply split at that point and recombined with one another to form two 

new genes of the same length. For example consider the first and third genes in the above 

example splitting at the third position as follows: 

Oil I 10 

110 I 00 

to form the following two new genes: 

01100 

11010 

Since crossover is a non-deterministic event, not all genes are selected to perform it. 

Additionally, the crossover can occur at any position within a gene based on an equal 
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probability for all possible locations. Note also that crossover does not result in a change 

of the population size, n. The purpose of crossover is for the most fit individuals (i.e., 

those who were selected to reproduce) to share their genetic information with other strong 

performing individuals in hopes of yielding even better individuals. A rough analogy of 

this process is the "all- pro" defensive end who inherits his size from his father but his 

quickness from his mother. Hence, it would be advantageous if the pairs selected to 

recombine did so in a manner such that their "best" characteristics were shared. 

Mutation. Mutation is the process by which individual positions within a gene 

change to a different character at random. Thus, for a binary coding, a "i" would mutate 

to a "0" and vice versa. For example if the gene "0110 0" mutates at its fifth position, 

it would become "0110 1." Since, mutation is not the most powerful operation 

occurring in nature, the probability of a bit mutating in genetic algorithms is normally 

chosen to be small - typically on the order of 0.001. Although not the most powerful 

operator, mutation does maintain vitality in the system by regaining lost genetic material. 

For example, it is possible for all of the individuals in a population to converge to a 

specific bit, such as a "1," in a given position. If the optimal solution contains a "0" in 

that position, then mutation is the only way for a "0" to be restored (27:19). 

Schema Theory 

The power behind genetic algorithms is based on schema theory. A schema is a 

similarity template of the subsets of gene strings. To explain scheme theory, a new 

character," * " , must be introduced. Similar to a wild card as used in computer file 

names, this symbol is essentially a "don't care" symbol. For binary coding it could 

represent either a "0" or a "1."  For example, the schema 01*0 could represent either 
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0110 or 0100. Such schema define hyperplanes in the search space as Figure A.l 

illustrates (5:875). 

SEARCH   SPACE 

Figure A.l Illustration of sample schema and defining hyperplanes. 

This figure shows four hyperplanes established by four schema (although more are 

possible). Note that the point "A" lies in exactly two of the hyperplanes and thus, is a 

member of only two of these schema. The fitness of a given individual actually provides 

some information about the average fitness of the 2l different schema of which it is an 

instance (5:876). Since in each generation, the fitness of  n individuals is evaluated, the 

effect of this observation is compounded.   A general result of the study of schema theory 

by Holland is that in each generation of size n, the genetic algorithm will implicitly 

evaluate n3 schemata (27:21). By combining this observation with the results of 

Holland's "fundamental theorem of genetic algorithms" which states that the best schema 

are expected to grow exponentially with time, one can see that genetic algorithms do a 

very efficient job of searching the solution space (27:21). This implicit parallelism is 

what gives the genetic algorithm its power. 

Just as in nature, genetic algorithms do not realize terrific gains until very many 

generations. It took millions of years for life forms as we know them to evolve into their 

present states via the workings of genetics. Even though no optimization problem can 
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rival the complexity of human evolution, it may still take thousands of generations for a 

solution to completely "evolve." Yet the power of modern computing resources acting on 

the simulated genetic operators of reproduction, cross-over, and mutation has proven very 

effective in solving very complicated optimization problems. 
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Appendix B: Sample Computer Code 

General 

This appendix provides sample computer code utilized for the genetic algorithm 
software, Genesis, version 5.0. Genesis is written in the C programming language and 
requires the user to provide the appropriate input file containing the achievement function 
which is to be optimized. The input file is compiled and linked to the remainder of the 
computer code via a makefile that is included with the software package. The user may 
vary the parameters of the algorithm (i.e., population size, cross-over rate, etc.) via a 
setup program provided with the software. 

The input files for the models using ten evenly spaced collocation points is provided 
for each of the four problems solved. For the models using other distributions of 
collocation points, only the function that sums residuals need be changed. 

Input File for the Navier - Stokes Problem 

/HS*********************************************** fjjg nslOe c ****/ 

/* This file creates the achievement function for the following differential       */ 
/* equation: f" + 2ff' + 1 - f sqrd = 0 on (0,1.5) */ 
/* The boundary conditions are f(0)=f(0)=0 and lim(x to inf) f (x) = 1 */ 
/* The trial function is a combination of exponential functions */ 
/* It used 10 evenly spaced collocation pts from 0 to 1.35 */ 

#include "math.h" 

/*******   FUNCTION TO SUM RESIDUALS *********/ 

double eval(str, length, vect, genes) 
char str[]; /* string representation */ 
int length; /* length of bit string */ 
double vect[];    /* floating point representation */ 
int genes; /* number of elements in vect */ 
{ 
double resid(), u(), du(), ddu(), dddu(), eval(); 
int m; /* number of collocation points */ 
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double 11 norm ;      /* 11 norm of residuals */ 
intj; /* counter */ 
double x[ 10]; 

m= 10; 
llnorm = 0.0; 

for (j = 0; j < m ; j++) 
{ 

xß] = j * 0.15 ; /* define collocation points */ 
llnorm += fabs( resid( vect, x[j], genes)); 

return (llnorm); 
} 
/*    H=^^********************g>jr) pTT^PTTON************************/ 

/* FUNCTION TO CALCULATE RESIDUAL AT COLLOCATION POINT */ 

double resid( vect, x, genes) 
double vect[]; 
double x; 
int genes; 

{ 
double residual; 

residual = dddu(vect, x, genes) + 2.0 * u(vect, x, genes) * ddu(vect, x, genes) 
+ 1.0 - pow( du(vect, x, genes),2.0); 

return (residual); 
} 

/******* FUNCTION TO GENERATE TEST FUNCTION     **************/ 

double u( vect, x, genes) 

double vect[]; 
double x; 
int genes; 

{ 
double test_function = 0.0; 
int i; 
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for (i = 2 ; i <= genes; i++) 

test_function += vect[i-l] * ((i-1) - i * exp(-x) + exp(-i * x)); 

test_function = test_function + vect[0] * (-1.0 + exp(-x) + x); 
return (test_function); 

} 
/# ^**********************"pMr) pjjjijp'j'ION************************/ 

/*   FUNCTION TO GENERATE FIRST DERIVATIVE OF TEST FUNCTION */ 

double du( vect, x, genes) 
double vect[]; 
double x; 
int genes; 

{ 
double first_derivative = 0.0; 
int i; 

for (i = 2 ; i <= genes; i++ ) 

first_derivative += vect[i-l] * (i * exp(-x) - i * exp(-i * x)); 

first_derivative = first_derivative + vect[0] * (-exp(-x) + 1.0); 

return (first_derivative); 
} 

/*   FUNCTION TO GENERATE SECOND DERIVATIVE OF TEST FUNCTION */ 

double ddu( vect, x, genes) 
double vect[]; 
double x; 
int genes; 

{ 
double second_derivative = 0.0; 
int i; 

for (i = 2 ; i <= genes; i++ ) 
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second_derivative += vect[i-l] * (-i * exp(-x) + i*i * exp(-i * x)); 

second_derivative = second_dei" /ative + vect[0] * exp(-x); 

return (second_derivative); 
} 
/* ***********************PND FUNCTION************************/ 

/*   FUNCTION TO GENERATE THIRD DERIVATIVE OF TEST FUNCTION */ 

double dddu( vect, x, genes) 

double vect[]; 
double x; 
int genes; 

{ 
double third_derivative = 0.0; 
int i; 

for (i = 2 ; i <= genes; i++ ) 
{ 
third_derivative += vect[i-l] * (i * exp(-x) - i*i*i * exp(-i * x)); 

} 
third_derivative = third_derivative + vect[0] * (-exp(-x)); 

return (third_derivative); 
} 
/*    ***********************T7NTT) pTjjs^ypjQj^************************/ 

/************************************************ gn(j of file ******/ 
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Input File for the Linear Boundary Value Problem 

/#*#**#******#******#******#**************#***#*# füg chlOe.c ****/ 

/* This file is the achievement function for the following differential 
equation: 

f' + (pi)A2 * f = -( x + 1) on the interval (-1,1). 

With the following boundary conditions: 

f(-l) = 0   and   f(l) = 0 

over 10 evenly spaced collocation points 

The trial functions are a combination of Chebyshev polynomials. */ 

#include "math.h" 

/*H=*****   FUNCTION TO SUM RESIDUALS   *#*#***#**********#***#/ 

double eval(str, length, vect, genes) 
char str[]; /* string representation */ 
int length; /* length of bit string */ 
double vect[];    /* floating point representation */ 
int genes; /* number of elements in vect */ 

{ 
double resid(), u(), ddu(), eval(); 
intm; /*   number of collocation points */ 
double 11 norm ;    /* sum of residuals */ 
inti; /* counter */ 
double x[ 10]; 

m= 10; 
llnorm = 0.0; 

for (i = 0; i < m; ++i) 
{ 

x[i] = (i - 4.5)/4.5 ;    /* define collocation points */ 
11 norm += fabs( resid( vect, x[i], genes)); 

return (11 norm); 
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/*  ************t-**********gwr) puwPTION************************/ 

/* FUNCTION TO CALCULATE RESIDUAL AT COLLOCATION POINT */ 

double resid( vect, x, genes) 
double vect[]; 
double x; 
int genes; /* this may need to be double */ 

{ 
double residual; 
double pi_sqrd = 9.8696044; 

residual = ddu(vect, x, genes) + pi_sqrd * u(vect,x,genes) + x + 1; 

return (residual); 
} 

/******* FUNCTION TO GENERATE TEST FUNCTION     **************/ 

double u( vect, x, genes) 

double vect[]; 
double x; 
int genes; 

{ 
double test_function = 0.0; 

/* This is four a four term test function */ 

test_function = vect[0] * (2 * pow(x, 2.0) - 4 * x - 6) 
+ vect[l] * (4 * pow(x, 3.0) - 12 *x - 8) 
+ vect[2] * (8 * pow(x, 4.0) - 8 * pow(x, 2.0) -16 * x - 16 ) 
+ vect[3] * (16 * pow(x, 5.0) - 20 * pow(x, 3.0) - 20 * x - 24); 

return (test_function); 
} 
/* ##*******#******#*#****Fj\jj) puNCTION*****************************/ 

*   FUNCTION TO GENERATE SECOND DERIVATIVE OF TEST FUNCTION */ 

double ddu( vect, x, genes) 
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double vect[]; 
double x; 
int genes; 

{ 
double second_derivative = 0.0; 

second_derivative = vect[0] * 4 + vect[l] * 24 * x 
+ vect[2] * (96 * pow(x, 2.0) -16) 
+ vect[3] * (320 * pow(x, 3.0) - 120*x ); 

return (second_derivative); 

} 

/H:*********************************************** gj^(j of file ******/ 
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Input File for the Burgers Equation Problem 

/***********#******#*******************#***###*** fjjg bulOe c ****/ 

/* This file creates the achievement function for the following differential       */ 
/* equation: (u - .5)u' - nu*u" = 0  nu >0 on (-inf, inf) */ 
/* This problem uses asymptotic boundary condtions */ 
/* The test function is: a(b - arctan( ex)) */ 
/* It uses 10 evenly spaced collocation pts from -1 and 1 */ 

#include "math.h" 

/*******   FUNCTION TO SUM RESIDUALS *********/ 

double eval(str, length, vect, genes) 
charstr[]; /* string representation */ 
int length; /* length of bit string */ 
double vect [];    » /* floating point representation */ 
int genes; /* number of elements in vect */ 

{ 
double resid(), u(), du(), ddu(), eval(); 
int m; /* number of collocation points */ 
double llnorm ; /* 11 norm of residuals */ 
intj; /* counter */ 
double x[ 10]; 

m= 10; 
llnorm = 0.0; 

for (j = 0; j < m ; j++) 
{ 

x[j] = (j - 4.5)/4.5 ; /* define collocation points */ 

llnorm += fabs( resid( vect, x[j], genes)) 
+ 10 * fabs(l - u(vect, -1.0, genes)) 
+ 10 * fabs(du(vect, 1.0, genes)) 
+ 10 * fabs(u(vect, 1.0, genes)); 

return (llnorm); 

B-8 



I*. ^;K****H:****************]HisTr) pTjNCTION************************/ 

/* FUNCTION TO CALCULATE RESIDUAL AT COLLOCATION POINT        */ 

double resid( vect, x, genes) 
double vect[]; 
double x; 
int genes; 

{ 
double residual; 
double nu = 0.05; 

residual =   (u(vect, x, genes) - 0.5)* du(vect, x, genes) 
- nu * ddu(vect, x, genes); 

return (residual); 
} 

/******* FUNCTION TO GENERATE TEST FUNCTION     **************/ 

double u( vect, x, genes) 

double vect[]; 
double x; 
int genes; 

{ 
double test_function = 0.0; 
double Pi = 1.314159; 
inti; 

test_function = vect[0]* ( vect[l] - atan(vect[2] * x)); 

return (test_function); 
} 

/*   FUNCTION TO GENERATE FIRST DERIVATIVE OF TEST FUNCTION */ 

double du( vect, x, genes) 
double vect[]; 
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double x; 
int genes; 

{ 
double first_derivative = 0.0; 
double Pi= 1.314159; 
inti; 

first_derivative = -vect[2] / ((1 + vect[2]*vect[2] * x*x) * Pi); 

return (first_derivative); 
} 
/* ***********************END puNCTION************************/ 

/*   FUNCTION TO GENERATE SECOND DERIVATIVE OF TEST FUNCTION */ 

double ddu( vect, x, genes) 
double vect[]; 
double x; 
int genes; 

{ 
double second_derivative = 0.0; 
double Pi =1.314159; 
inti; 

second_derivative = 2.0 * pow(vect[2], 3.0) * x 
/ (pow(l + vect[2]*vect[2] * x*x, 2.0) * Pi); 

return (second_derivative); 
} 
/*   ***********************gj^j-j pTjj^prpjQj«^************************y 

************************************************* gj^(j of file ****/ 
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Input File for the Fisher Equation Problem 

/**#*****#*#*#*##***#####*#***#*****#***#******** fjjg fl0e5 c ****/ 

/* This file creates the achievement function for the following differential 
equation: 

f' + lambda * f*(l - f) = 0 on the interval (0, infinity). 

With the following boundary conditions: 

f(0) = 1   and   f (0) = -0.5 

It uses Laguerre polynomials as the trial functions over 10 evenly 
spaced collocation points. The boundary conditions are weighted by a 
factor of 25. */ 

#include "math.h" 

/*******   FUNCTION TO SUM RESIDUALS *********/ 

double eval(str, length, vect, genes) 
char str[]; /* string representation */ 
int length; /* length of bit string */ 
double vect[]; /* floating point representation */ 
int genes; /* number of elements in vect */ 

{ 
double resid(), u(), ddu(), eval(); 
int m; /* number of collocation points */ 
double 11 norm ; /* sum of residuals */ 
double ach_fnc; /*llnorm of residual eqn plus boundary residuals   */ 
int i; /* counter */ 
double x[ 10]; 

m= 10; 
llnorm = 0.0; 
achjhc = 0.0; 

for (i = 0; i < m ; i++) 
{ 

x[i] = i * . 11111 ;     /* define collocation points */ 
llnorm += fabs( resid( vect, x[i], genes)); 
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ach_fnc = 11 norm + 25 * fabs( 1- u(vect, 0.0,genes)) 
+ 25 * fabs(-.5 - du(vect,0.0,genes)); 

return (ach_fnc); 

} 

/* FUNCTION TO CALCULATE RESIDUAL AT COLLOCATION POINT        */ 

double resid( vect, x, genes) 
double vect[]; 
double x; 
int genes; 

{ 
double residual; 
double lambda= 5.0; 

residual = ddu(vect, x, genes) + lambda * u(vect,x,genes) * (1.0 - u(vect,x,genes)); 

return (residual); 
} 
/* #****####*******#*##**#]H]SJ£) FUNCTION************************/ 

/******* FUNCTION TO GENERATE TEST FUNCTION     **************/ 

double u( vect, x, genes) 

double vect[]; 
double x; 
int genes; 

{ 
double test_function = 0.0; 

/* This is four a five term test function */ 

test_function = vect[0] 
+ vect[l] * ( exp(x)*(exp(-x) - x/exp(x))) 
+ vect[2] * ( exp(x)*(2.0/exp(x) - 4*x/exp(x) 

+ pow(x,2.0)/exp(x))/2.0) 
+ vect[3] * ( exp(x)*(6/exp(x) - 18*x/exp(x) 

+ 9*pow(x,2.0)/exp(x) 
- pow(x,3-0)/exp(x))/6) 
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+ vect[4] * ( exp(x)*(24/exp(x) - 96*x/exp(x) 
+ 72.0*pow(x,2.0)/exp(x) - 16*pow(x,3.0)/exp(x) 
+ pow(x,4.0)/exp(x))/24 ); 

return (test_function); 
} 
/* #*###****#*********#***cjvTrj PUNCTION************************/ 

/*   FUNCTION TO GENERATE FIRST DERIVATIVE OF TEST FUNCTION */ 

double du( vect, x, genes) 
double vect[]; 
double x; 
int genes; 

{ 
double first_derivative = 0.0; 

first_derivative = vect[l] * ( exp(x)*(exp(-x) - x/exp(x)) 
+ exp(x)*(-2/exp(x) + x/exp(x))) 

+ vect[2] * ( exp(x)*(-6/exp(x) + 6*x/exp(x) 
- pow(x,2.0)/exp(x))/2 
+ exp(x)*(2/exp(x) - 4*x/exp(x) 
+ pow(x,2.0)/exp(x))/2) 
+ vect[3] * ( exp(x)*(6/exp(x) - 18*x/exp(x) 
+ 9*pow(x,2.0)/exp(x) 
- pow(x,3.0)/exp(x))/6 
+ exp(x)*(-24/exp(x) + 36*x/exp(x) 
- 12*pow(x,2.0)/exp(x) 
+ pow(x,3-0)/exp(x))/6) 

+ vect[4] * ( exp(x)*(-120/exp(x) + 240*x/exp(x) 
- 120*pow(x,2.0)/exp(x) 
+ 20*pow(x,3.0)/exp(x) 
- pow(x,4.0)/exp(x))/24 
+ exp(x)*(24/exp(x) - 96*x/exp(x) 
+ 72*pow(x,2.0)/exp(x) 
- 16*pow(x,3-0)/exp(x) 
+ pow(x,4.0)/exp(x))/24); 

return (first_derivative); 
} 
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I*   FUNCTION TO GENERATE SECOND DERIVATIVE OF TEST FUNCTION */ 

double ddu( vect, x, genes) 
double vect[]; 
double x; 
int genes; 

{ 
double second_derivative = 0.0; 

second_derivative = vect[l] * (exp(x)*(exp(-x) - x/exp(x)) 
+ exp(x)*(3/exp(x) - x/exp(x)) 
+ 2*exp(x)*(-2/exp(x) + x/exp(x))) 
+ vect[2] * (exp(x)*(-6/exp(x) + 6*x/exp(x) 
- pow(x,2.0)/exp(x)) 
+ exp(x)*(12/exp(x) - 8*x/exp(x) 
+ pow(x,2.0)/exp(x))/2 
+ exp(x)*(2/exp(x) - 4*x/exp(x) 
+ pow(x,2.0)/exp(x))/2) 

+ vect[3] * (exp(x)*(6/exp(x) - 18*x/exp(x) 
+ 9*pow(x,2.0)/exp(x) 
- pow(x,3-0)/exp(x))/6 
+ exp(x)*(60/exp(x) - 60*x/exp(x) 
+ 15*pow(x,2.0)/exp(x) 
- pow(x,3.0)/exp(x))/6 
+ exp(x)*(-24/exp(x) + 36*x/exp(x) 
- 12*pow(x,2.0)/exp(x) 
+ pow(x,3-0)/exp(x))/3) 

+ vect[4] * ( exp(x)*(-120/exp(x) + 240*x/exp(x) 
- 120*pow(x,2.0)/exp(x) 
+ 20*pow(x,3.0)/exp(x) 
- pow(x,4.0)/exp(x))/12 
+ exp(x)*(360/exp(x) - 480*x/exp(x) 
+ 180*pow(x,2.0)/exp(x) 
- 24*pow(x,3.0)/exp(x) 
+ pow(x,4.0)/exp(x))/24 
+ exp(x)*(24/exp(x) - 96*x/exp(x) 
+ 72*pow(x,2.0)/exp(x) 
- 16*pow(x,3-0)/exp(x) 
+ pow(x,4.0)/exp(x))/24 ); 

return (second_derivative); 
} 
/* #****#****##**##***#**#]TNrj pujsj^'pjoN************************/ 
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